SSTUA32866

1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-667 RDIMM applications

Rev. 01 — 15 July 2005

Product data sheet

1. General description

The SSTUA32866 is a 1.8 V configurable register specifically designed for use on DDR2 memory modules requiring a parity checking function. It is defined in accordance with the JEDEC standard for the SSTUA32866 registered buffer. The register is configurable (using configuration pins C0 and C1) to two topologies: 25-bit 1: 1 or 14-bit 1: 2, and in the latter configuration can be designated as Register A or Register B on the DIMM.

The SSTUA32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

The SSTUA32866 is packaged in a 96-ball, 6×16 grid, 0.8 mm ball pitch LFBGA package (13.5 mm \times 5.5 mm).

2. Features

- Configurable register supporting DDR2 up to 667 MT/s Registered DIMM applications
- Configurable to 25-bit 1: 1 mode or 14-bit 1: 2 mode
- Controlled output impedance drivers enable optimal signal integrity and speed
- Exceeds JESD82-7 speed performance (1.8 ns max. single-bit switching propagation delay; 2.0 ns max. mass-switching)
- Supports up to 450 MHz clock frequency of operation
- Optimized pinout for high-density DDR2 module design
- Chip-selects minimize power consumption by gating data outputs from changing state
- Supports SSTL_18 data inputs
- Checks parity on the DIMM-independent data inputs
- Partial parity output and input allows cascading of two SSTUA32866s for correct parity error processing
- Differential clock (CK and CK) inputs
- Supports LVCMOS switching levels on the control and RESET inputs
- Single 1.8 V supply operation (1.7 V to 2.0 V)
- Available in 96-ball, 13.5 × 5.5 mm, 0.8 mm ball pitch LFBGA package

3. Applications

400 MT/s to 667 MT/s DDR2 registered DIMMs desiring parity checking functionality

4. Ordering information

Table 1: Ordering information

 $T_{amb} = 0 \,^{\circ}C$ to $+70 \,^{\circ}C$.

Type number	Solder process	Package		
		Name	Description	Version
SSTUA32866EC/G	Pb-free (SnAgCu solder ball compound)	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05$ mm	SOT536-1
SSTUA32866EC	SnPb solder ball compound	LFBGA96	plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05$ mm	SOT536-1

5. Functional diagram

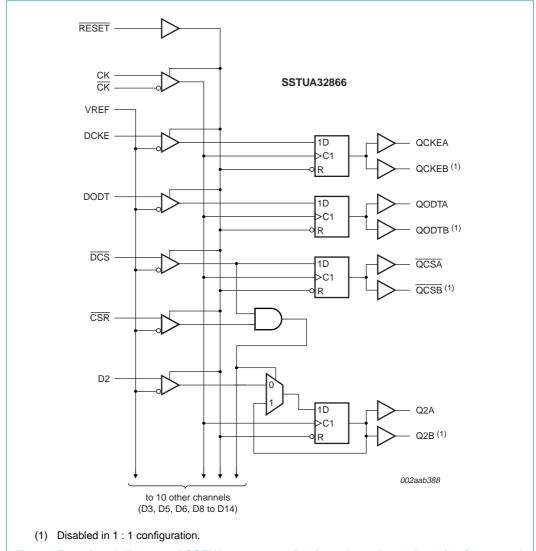
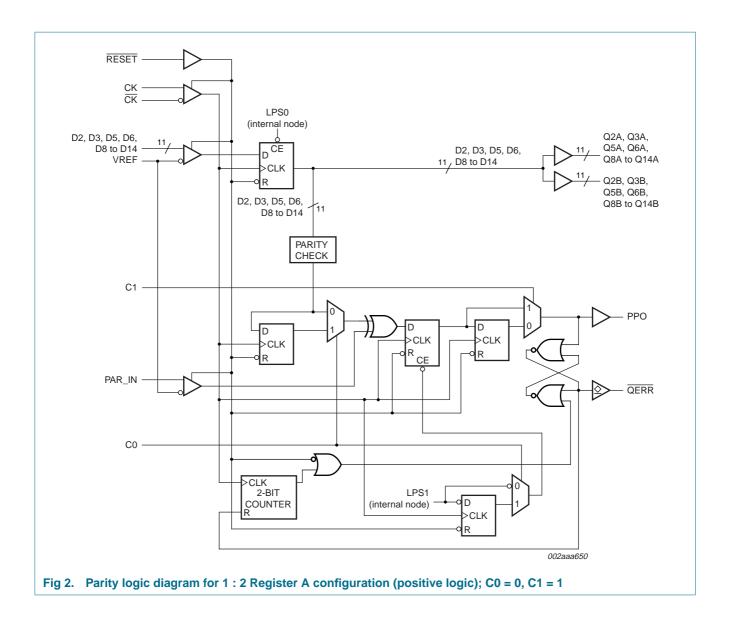
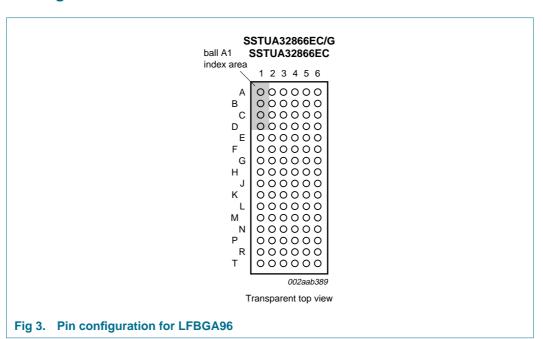
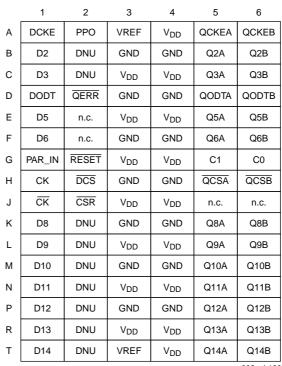




Fig 1. Functional diagram of SSTUA32866; 1 : 2 Register A configuration with C0 = 0 and C1 = 1 (positive logic)


6. Pinning information

6.1 Pinning

	1	2	3	4	5	6
Α	DCKE	PPO	VREF	V_{DD}	QCKE	DNU
В	D2	D15	GND	GND	Q2	Q15
С	D3	D16	V_{DD}	V _{DD}	Q3	Q16
D	DODT	QERR	GND	GND	QODT	DNU
Е	D5	D17	V _{DD}	V _{DD}	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
Н	СК	DCS	GND	GND	QCS	DNU
J	СK	CSR	V _{DD}	V _{DD}	n.c.	n.c.
K	D8	D19	GND	GND	Q8	Q19
L	D9	D20	V_{DD}	V_{DD}	Q9	Q20
М	D10	D21	GND	GND	Q10	Q21
N	D11	D22	V_{DD}	V_{DD}	Q11	Q22
Р	D12	D23	GND	GND	Q12	Q23
R	D13	D24	V_{DD}	V _{DD}	Q13	Q24
Т	D14	D25	VREF	V _{DD}	Q14	Q25
						002aab108

Fig 4. Ball mapping, 1:1 register (C0 = 0, C1 = 0)

002aab109

Fig 5. Ball mapping, 1 : 2 Register A (C0 = 0, C1 = 1)

	1	2	3	4	5	6
Α	D1	PPO	VREF	V_{DD}	Q1A	Q1B
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	V _{DD}	V _{DD}	Q3A	Q3B
D	D4	QERR	GND	GND	Q4A	Q4B
Е	D5	DNU	V _{DD}	V _{DD}	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	PAR_IN	RESET	V _{DD}	V _{DD}	C1	C0
н	СК	DCS	GND	GND	QCSA	QCSB
J	СК	CSR	V _{DD}	V _{DD}	n.c.	n.c.
к	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V _{DD}	V _{DD}	Q9A	Q9B
М	D10	DNU	GND	GND	Q10A	Q10B
N	DODT	DNU	V_{DD}	V _{DD}	QODTA	QODTB
Р	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{DD}	V _{DD}	Q13A	Q13B
Т	DCKE	DNU	VREF	V _{DD}	QCKEA	QCKEB

002aab110

Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)

6.2 Pin description

Table 2: Pin description

Symbol	Pin	Туре	Description
GND	B3, B4, D3, D4, F3, F4, H3, H4, K3, K4, M3, M4, P3, P4	ground input	ground
V_{DD}	A4, C3, C4, E3, E4, G3, G4, J3, J4, L3, L4, N3, N4, R3, R4, T4	1.8 V nominal	power supply voltage
VREF	A3, T3	0.9 V nominal	input reference voltage
CK	H1	Differential input	positive master clock input
CK	J1	Differential input	negative master clock input
C0 C1	G6 G5	LVCMOS inputs	Configuration control inputs; Register A or Register B and 1 : 1 mode or 1 : 2 mode select.
RESET	G2	LVCMOS input	Asynchronous reset input (active LOW). Resets registers and disables VREF data and clock.
CSR	J2	SSTL_18 input	Chip select inputs (active LOW). Disables
DCS	H2		D1 to D25 2 outputs switching when both inputs are HIGH.
D1 to D25	[1]	SSTL_18 input	Data input. Clocked in on the crossing of the rising edge of CK and the falling edge of $\overline{\text{CK}}$.
DODT	<u>[1]</u>	SSTL_18 input	The outputs of this register bit will not be suspended by the \overline{DCS} and \overline{CSR} control.
DCKE	<u>[1]</u>	SSTL_18 input	The outputs of this register bit will not be suspended by the \overline{DCS} and \overline{CSR} control.
PAR_IN	G1	SSTL_18 input	Parity input. Arrives one clock cycle after the corresponding data input.
Q1 to Q25, Q2A to Q14A, Q1B to Q14B	[1]	1.8 V CMOS outputs	Data outputs that are suspended by the DCS and CSR control 3.
PPO	A2	1.8 V CMOS output	Partial parity out. Indicates odd parity of inputs D1 to D25 [2].
$\overline{\text{QCS}}$, $\overline{\text{QCSA}}$, $\overline{\text{QCSB}}$	<u>[1]</u>	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QODT, QODTA, QODTB	<u>[1]</u>	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.
QCKE, QCKEA, QCKEB	<u>[1]</u>	1.8 V CMOS output	Data output that will not be suspended by the DCS and CSR control.

Symbol	Pin	Туре	Description
QERR	D2	open-drain output	Output error bit (active LOW). Generated one clock cycle after the corresponding data output
n.c.	<u>[1]</u>	-	Not connected. Ball present but no internal connection to the die.
DNU	<u>[1]</u>	-	Do not use. Inputs are in standby-equivalent mode and outputs are driven LOW.

- [1] Depends on configuration. See Figure 4, Figure 5, and Figure 6 for ball number.
- [2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.
 Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.
 Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.
- [3] Data outputs = Q2, Q3, Q5, Q6, Q8 to Q25 when C0 = 0 and C1 = 0.
 Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when C0 = 0 and C1 = 1.
 Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when C0 = 1 and C1 = 1.

7. Functional description

The SSTUA32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity, designed for 1.7 V to 2.0 V V_{DD} operation.

All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control and reset (RESET) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18 specifications. The error (QERR) output is 1.8 V open-drain driver.

The SSTUA32866 operates from a differential clock (CK and \overline{CK}). Data are registered at the crossing of CK going HIGH, and CK going LOW.

The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration (when LOW) to B configuration (when HIGH). The C1 input controls the pinout configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).

The SSTUA32866 accepts a parity bit from the memory controller on its parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs and indicates whether a parity error has occurred on its open-drain QERR pin (active LOW). The convention is even parity, that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit.

When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration, parity is checked on the PAR_IN input which arrives one cycle after the input data to which it applies. The Partial-Parity-Out (PPO) and $\overline{\text{QERR}}$ signals are produced three cycles after the corresponding data inputs.

When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the first device. The PPO and QERR signals are produced on the second device three clock cycles after the corresponding data inputs. The PPO output of the first register is

cascaded to the PAR_IN of the second register. The $\overline{\text{QERR}}$ output of the first register is left floating and the valid error information is latched on the $\overline{\text{QERR}}$ output of the second register.

If an error occurs and the $\overline{\text{QERR}}$ output is driven LOW, it stays latched LOW for two clock cycles or until $\overline{\text{RESET}}$ is driven LOW. The DIMM-dependent signals (DCKE, $\overline{\text{DCS}}$, DODT, and $\overline{\text{CSR}}$) are not included in the parity check computation.

The device supports low-power standby operation. When RESET is LOW, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid logic HIGH or LOW level.

The device also supports low-power active operation by monitoring both system chip select (\overline{DCS} and \overline{CSR}) inputs and will gate the Qn and PPO outputs from changing states when both \overline{DCS} and \overline{CSR} inputs are HIGH. If either \overline{DCS} or \overline{CSR} input is LOW, the Qn and PPO outputs will function normally. The \overline{RESET} input has priority over the \overline{DCS} and \overline{CSR} control and when driven LOW will force the Qn and PPO outputs LOW, and the \overline{QERR} output HIGH. If the \overline{DCS} control functionality is not desired, then the \overline{CSR} input can be hard-wired to ground, in which case, the setup time requirement for \overline{DCS} would be the same as for the other Dn data inputs. To control the low-power mode with \overline{DCS} only, then the \overline{CSR} input should be pulled up to V_{DD} through a pull-up resistor.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the LOW state during power-up.

In the DDR2 RDIMM application, $\overline{\text{RESET}}$ is specified to be completely asynchronous with respect to CK and $\overline{\text{CK}}$. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the Qn outputs will be driven LOW quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are LOW, and the clock is stable during the time from the LOW-to-HIGH transition of $\overline{\text{RESET}}$ until the input receivers are fully enabled, the design of the SSTUA32866 must ensure that the outputs will remain LOW, thus ensuring no glitches on the output.

7.1 Function table

Table 3: Function table (each flip-flop)

L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH transition; $\downarrow = HIGH$ -to-LOW transition

		In	puts				Outputs [1]	
RESET	DCS	CSR	СК	CK	Dn, DODTn, DCKEn	Qn	QCS	QODT, QCKE
Н	L	L	^	<u> </u>	L	L	L	L
Н	L	L	↑	\downarrow	Н	Н	L	Н
Н	L	L	L or H	L or H	Х	Q_0	Q_0	Q_0
Н	L	Н	↑	\downarrow	L	L	L	L
Н	L	Н	↑	\downarrow	Н	Н	L	Н
Н	L	Н	L or H	L or H	Х	Q_0	Q_0	Q_0
Н	Н	L	↑	\downarrow	L	L	Н	L
Н	Н	L	↑	\downarrow	Н	Н	Н	Н
Н	Н	L	L or H	L or H	X	Q_0	Q_0	Q_0
Н	Н	Н	↑	\downarrow	L	Q_0	Н	L
Н	Н	Н	↑	\downarrow	Н	Q_0	Н	Н
Н	Н	Н	L or H	L or H	Х	Q_0	Q_0	Q_0
L	X or floating	L	L	L				

^[1] Q₀ is the previous state of the associated output.

Table 4: Parity and standby function table

L = LOW voltage level; H = HIGH voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH transition; $\downarrow = HIGH$ -to-LOW transition

			Inputs				Outp	uts [1]
RESET	DCS	CSR	СК	CK	Σ of inputs = H (D1 to D25)	PAR_IN 2	PPO [3]	QERR
Н	L	X	1	\downarrow	even	L	L	Н
Н	L	Χ	↑	\downarrow	odd	L	Н	L
Н	L	Х	1	\downarrow	even	Н	Н	L
Н	L	Χ	1	\downarrow	odd	Н	L	Н
Н	Н	L	1	\downarrow	even	L	L	Н
Н	Н	L	1	\downarrow	odd	L	Н	L
Н	Н	L	1	\downarrow	even	Н	Н	L
Н	Н	L	1	\downarrow	odd	Н	L	Н
Н	Н	Н	1	\downarrow	X	Х	PPO ₀	QERR ₀
Н	Х	Χ	L or H	L or H	X	Х	PPO ₀	\overline{QERR}_0
L	X or floating	X or floating	L	Н				

^[1] PPO₀ is the previous state of output PPO; $\overline{\text{QERR}}_0$ is the previous state of output $\overline{\text{QERR}}$.

9397 750 14759

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

 ^[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.
 Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.
 Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.

^[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.

^[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+2.5	V
VI	receiver input voltage		-0.5 <u>[1]</u>	+2.5[2]	V
Vo	driver output voltage		-0.5 <u>[1]</u>	V _{DD} + 0.5 [2]	V
I _{IK}	input clamp current	$V_I < 0 \text{ V or } V_I > V_{DD}$	-	-50	mA
l _{OK}	output clamp current	$V_O < 0 \text{ V or } V_O > V_{DD}$	-	±50	mA
Io	continuous output current	$0 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{DD}}$	-	±50	mA
I _{CCC}	continuous current through each V _{DD} or GND pin		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
V _{esd}	electrostatic discharge voltage	Human Body Model (HBM); 1.5 k Ω ; 100 pF	2	-	kV
		Machine Model (MM); 0 Ω; 200 pF	200	-	V

^[1] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

9. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		1.7	-	2.0	V
V _{ref}	reference voltage		$0.49 \times V_{DD}$	$0.50 \times V_{DD}$	$0.51 \times V_{DD}$	V
V_{TT}	termination voltage		$V_{ref} - 0.040$	V_{ref}	V _{ref} + 0.040	V
V_{I}	input voltage		0	-	V_{DD}	V
V _{IH(AC)}	AC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs	V _{ref} + 0.250	-	-	V
V _{IL(AC)}	AC LOW-level input voltage	data (Dn), CSR, and PAR_IN inputs	-	-	V _{ref} - 0.250	V
V _{IH(DC)}	DC HIGH-level input voltage	data (Dn), CSR, and PAR_IN inputs	V _{ref} + 0.125	-	-	V
V _{IL(DC)}	DC LOW-level input voltage	data (Dn), CSR, and PAR_IN inputs	-	-	V _{ref} – 0.125	V
V _{IH}	HIGH-level input voltage	RESET, Cn	$\boxed{1} 0.65 \times V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage	RESET, Cn	[1] -	-	$0.35 \times V_{DD}$	V
V _{ICR}	common mode input voltage range	CK, CK	[2] 0.675	-	1.125	V
V _{ID}	differential input voltage	CK, CK	[2] 600	-	-	mV

9397 750 14759

^[2] This value is limited to 2.5 V maximum.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{OH}	HIGH-level output current		-	-	-8	mA
I _{OL}	LOW-level output current		-	-	8	mA
T _{amb}	ambient temperature	operating in free air	0	-	+70	°C

^[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.

10. Characteristics

Table 7: Characteristics

At recommended operating conditions (see Table 6); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$I_{OH} = -6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	1.2	-	-	V
V_{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}; V_{DD} = 1.7 \text{ V}$	-	-	0.5	V
l _l	input current	all inputs; $V_I = V_{DD}$ or GND; $V_{DD} = 2.0 \text{ V}$	-	-	±5	μΑ
I _{DD}	static standby current	$\overline{\text{RESET}} = \text{GND}; I_{\text{O}} = 0 \text{ mA};$ $V_{\text{DD}} = 2.0 \text{ V}$	-	-	100	μА
	static operating current	$\overline{RESET} = V_{DD}; I_{O} = 0 \text{ mA};$ $V_{DD} = 2.0 \text{ V}; V_{I} = V_{IH(AC)} \text{ or } V_{IL(AC)}$	-	-	40	mA
I _{DDD}	dynamic operating current per MHz, clock only	$\label{eq:RESET} \begin{split} \overline{\text{RESET}} &= \text{V}_{\text{DD}};\\ \text{V}_{\text{I}} &= \text{V}_{\text{IH}(\text{AC})} \text{ or V}_{\text{IL}(\text{AC})}; \text{ CK and } \overline{\text{CK}}\\ \text{switching at 50 \% duty cycle.}\\ \text{I}_{\text{O}} &= \text{0 mA}; \text{V}_{\text{DD}} = \text{1.8 V} \end{split}$	-	16	-	μΑ
	dynamic operating current per MHz, per each data input, 1 : 1 mode	$\overline{RESET} = V_{DD};$ $V_{I} = V_{IH(AC)} \text{ or } V_{IL(AC)}; \text{ CK and } \overline{CK}$ switching at 50 % duty cycle. One data input switching at half clock frequency, 50 % duty cycle. $I_{O} = 0 \text{ mA}; V_{DD} = 1.8 \text{ V}$	-	11	- 0.5 ±5	μΑ
	dynamic operating current per MHz, per each data input, 1 : 2 mode	$\label{eq:RESET} \hline \textbf{RESET} = \textbf{V}_{DD}; \\ \textbf{V}_{I} = \textbf{V}_{IH(AC)} \text{ or } \textbf{V}_{IL(AC)}; \text{ CK and } \overline{\textbf{CK}} \\ \text{switching at 50 \% duty cycle. One} \\ \text{data input switching at half clock} \\ \text{frequency, 50 \% duty cycle.} \\ \textbf{I}_{O} = 0 \text{ mA}; \textbf{V}_{DD} = 1.8 \text{ V} \\ \hline \end{tabular}$	-	19		μА
C _i	input capacitance, data and $\overline{\text{CSR}}$ inputs	$V_I = V_{ref} \pm 250 \text{ mV}; V_{DD} = 1.8 \text{ V}$	2.5	-	3.5	pF
	input capacitance, CK and CK inputs	$V_{ICR} = 0.9 \text{ V}; V_{i(p-p)} = 600 \text{ mV};$ $V_{DD} = 1.8 \text{ V}$	2	-	- 0.5 ±5 100 40 - - 3.5	pF
	input capacitance, RESET input	$V_I = V_{DD}$ or GND; $V_{DD} = 1.8 \text{ V}$	3	-	4	pF

^[2] The differential inputs must not be floating, unless RESET is LOW.

At recommended operating conditions (see Table 6), unless otherwise specified. See Figure 2.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clock}	clock frequency		-	-	450	MHz
t_{W}	pulse duration, CK, $\overline{\text{CK}}$ HIGH or LOW		1	-	-	ns
t _{ACT}	differential inputs active time		[1][2] _	-	10	ns
t _{INACT}	differential inputs inactive time		[1][3]	-	15	ns
t _{su}	setup time	$\overline{\text{DCS}}$ before CK \uparrow , $\overline{\text{CK}}\downarrow$, $\overline{\text{CSR}}$ HIGH; $\overline{\text{CSR}}$ before CK \uparrow , $\overline{\text{CK}}\downarrow$, $\overline{\text{DCS}}$ HIGH	0.7	-	-	ns
		$\overline{\text{DCS}}$ before CK \uparrow , $\overline{\text{CK}}\downarrow$, $\overline{\text{CSR}}$ LOW	0.5	-	-	ns
		DODT, DCKE and data (Dn) before CK \uparrow , $\overline{\text{CK}}\downarrow$	0.5	-	-	ns
		PAR_IN before CK↑, CK↓	0.5	-	-	ns
t _h	hold time	DCS, DODT, DCKE and data (Dn) after CK↑, $\overline{\text{CK}} \downarrow$	0.5	-	-	ns
		PAR_IN after CK↑, CK↓	0.5	-	-	ns

^[1] This parameter is not necessarily production tested.

Table 9: Switching characteristics

At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.1.

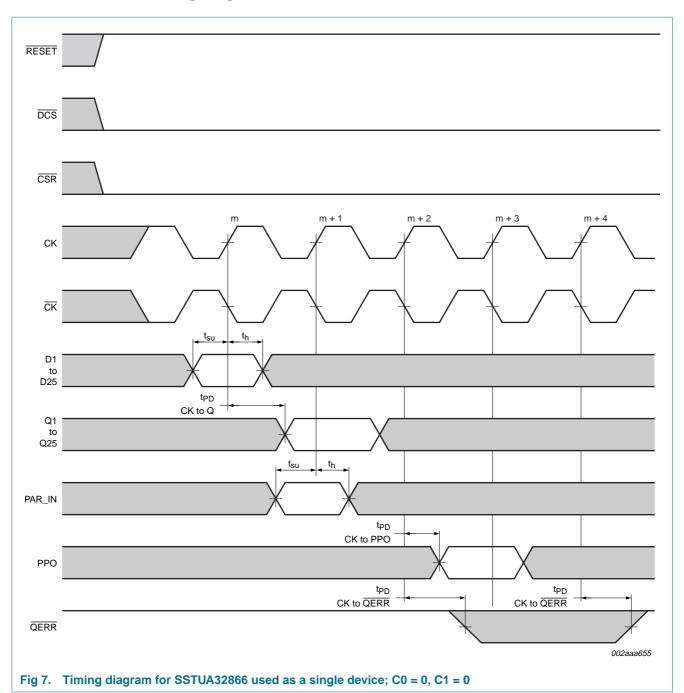
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{MAX}	maximum input clock frequency		450	-	-	MHz
t_{PDM}	propagation delay, single bit switching	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to Qn	[<u>1]</u> 1.2	-	1.8	ns
t _{PD}	propagation delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to PPO	0.5	-	1.8	ns
t_{LH}	LOW-to-HIGH propagation delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to $\overline{\text{QERR}}$	1.2	-	3	ns
t_{HL}	HIGH-to-LOW propagation delay	from CK \uparrow and $\overline{\text{CK}} \downarrow$ to $\overline{\text{QERR}}$	1	-	2.4	ns
t _{PDMSS}	propagation delay, simultaneous switching	from CK↑ and $\overline{\text{CK}}$ ↓ to Qn	[1][2] _	-	2.0	ns
t _{PHL}	HIGH-to-LOW propagation delay	from RESET↓ to Qn↓	-	-	3	ns
		from RESET↓ to PPO↓	-	-	3	ns
t _{PLH}	LOW-to-HIGH propagation delay	from RESET↓ to QERR↑	-	-	3	ns

^[1] Includes 350 ps of test-load transmission line delay.

Table 10: Data output edge rates

At recommended operating conditions (see Table 6), unless otherwise specified. See Section 11.2.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dV/dt_r	rising edge slew rate	from 20 % to 80 %	1	-	4	V/ns
dV/dt_f	falling edge slew rate	from 80 % to 20 %	1	-	4	V/ns
dV/dt_Δ	absolute difference between dV/dt_r and dV/dt_f	from 20 % or 80 % to 80 % or 20 %	-	-	1	V/ns


9397 750 14759 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

^[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of t_{ACT(max)} after RESET is taken HIGH.

^[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of t_{INACT(max)} after RESET is taken LOW.

^[2] This parameter is not necessarily production tested.

10.1 Timing diagrams

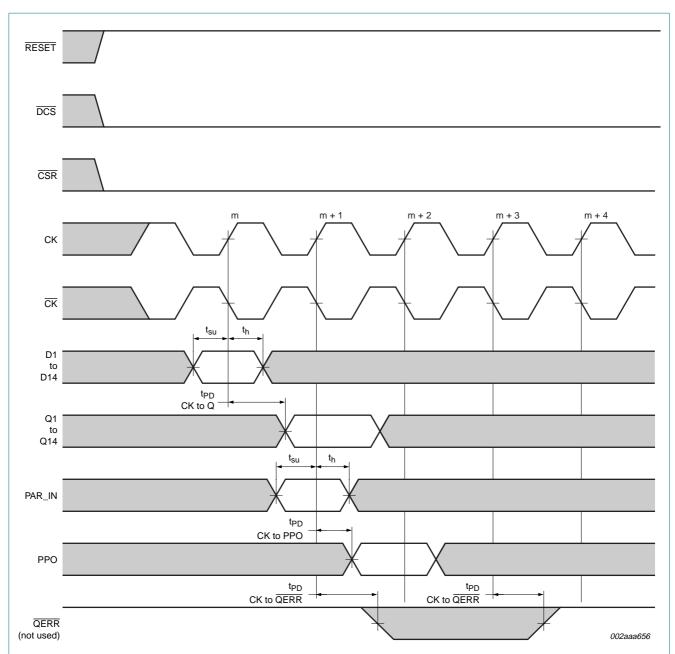
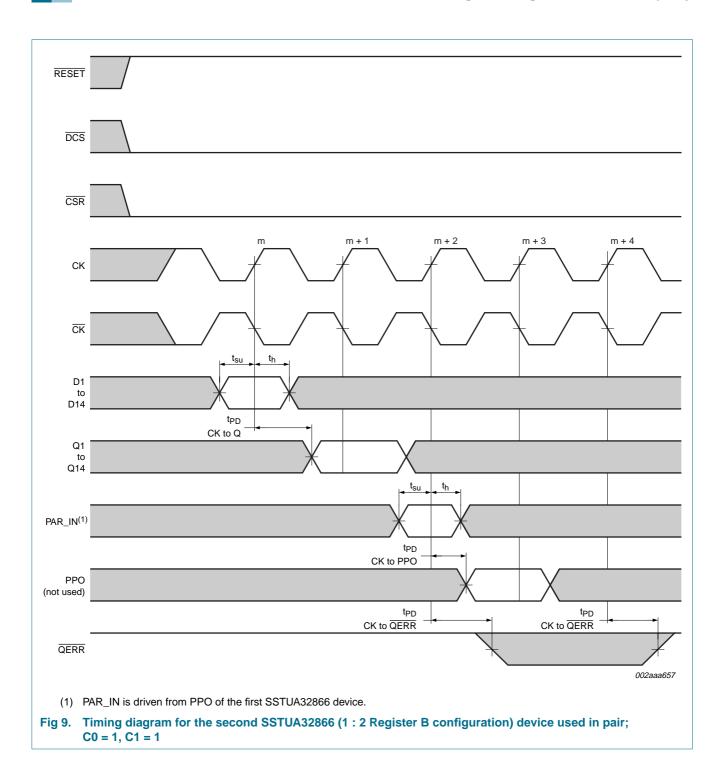
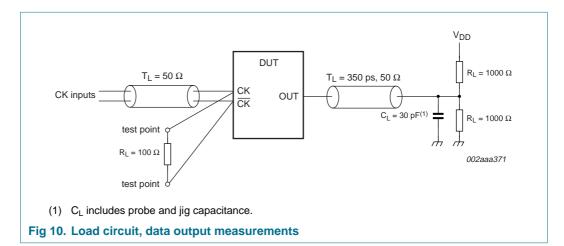
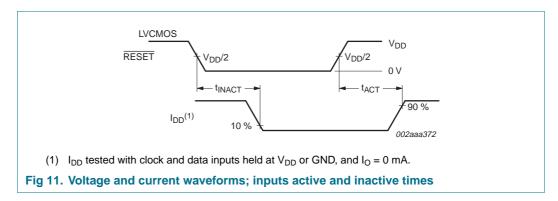
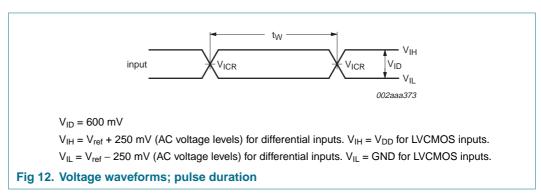



Fig 8. Timing diagram for the first SSTUA32866 (1 : 2 Register A configuration) device used in pair; C0 = 0, C1 = 1


11. Test information


11.1 Parameter measurement information for data output load circuit


 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_0 = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

The outputs are measured one at a time with one transition per measurement.

9397 750 14759

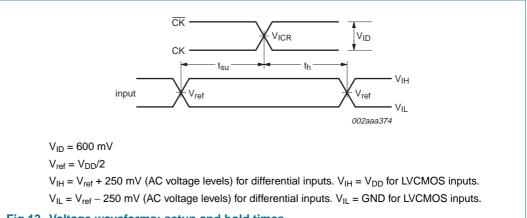
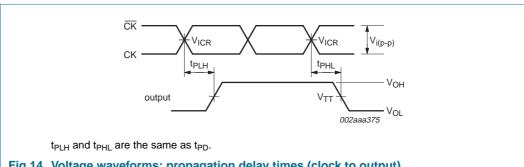
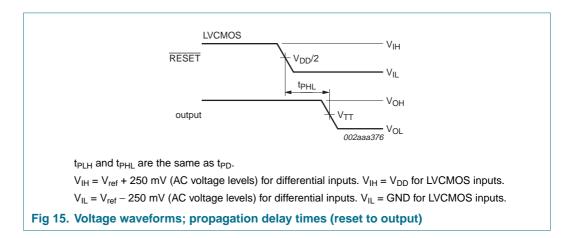
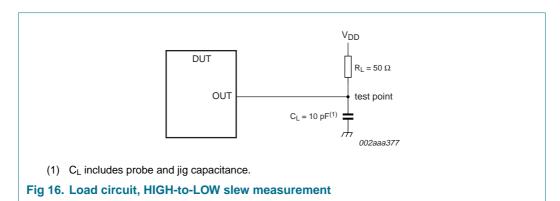


Fig 13. Voltage waveforms; setup and hold times


Fig 14. Voltage waveforms; propagation delay times (clock to output)

11.2 Data output slew rate measurement information

 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_0 = 50 Ω ; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

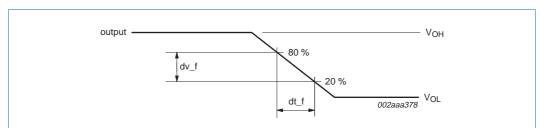
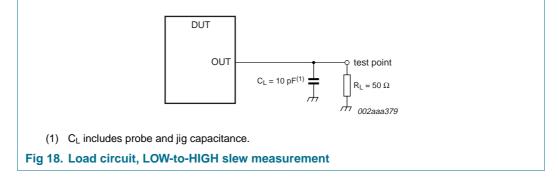
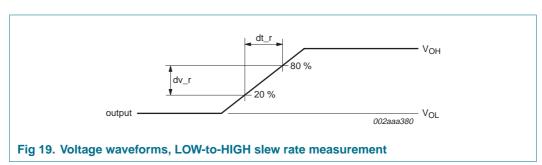
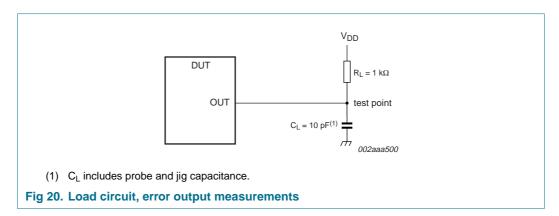




Fig 17. Voltage waveforms, HIGH-to-LOW slew rate measurement



11.3 Error output load circuit and voltage measurement information

 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50 \Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

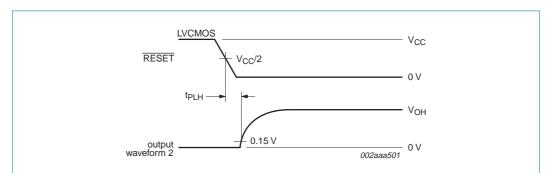


Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to RESET input.

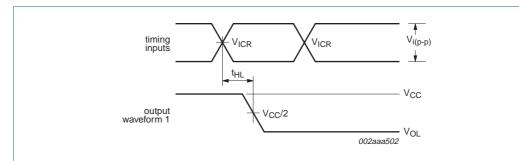
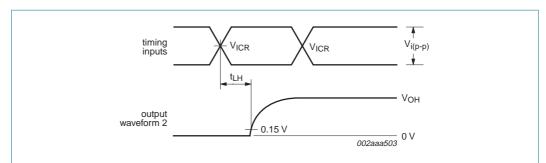
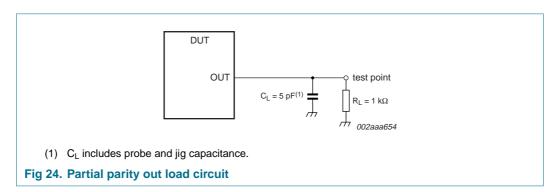
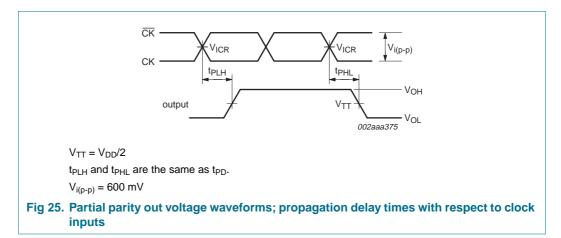
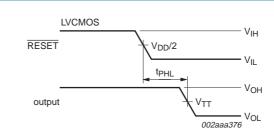


Fig 22. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect to clock inputs


Fig 23. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to clock inputs


11.4 Partial parity out load circuit and voltage measurement information

 $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}.$

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50 \Omega$; input slew rate = 1 V/ns \pm 20 %, unless otherwise specified.

 $V_{TT} = V_{DD}/2$

 t_{PLH} and t_{PHL} are the same as t_{PD} .

 V_{IH} = V_{ref} + 250 mV (AC voltage levels) for differential inputs. V_{IH} = V_{DD} for LVCMOS inputs.

 V_{IL} = V_{ref} – 250 mV (AC voltage levels) for differential inputs. V_{IL} = V_{DD} for LVCMOS inputs.

Fig 26. Partial parity out voltage waveforms; propagation delay times with respect to RESET input

12. Package outline

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1

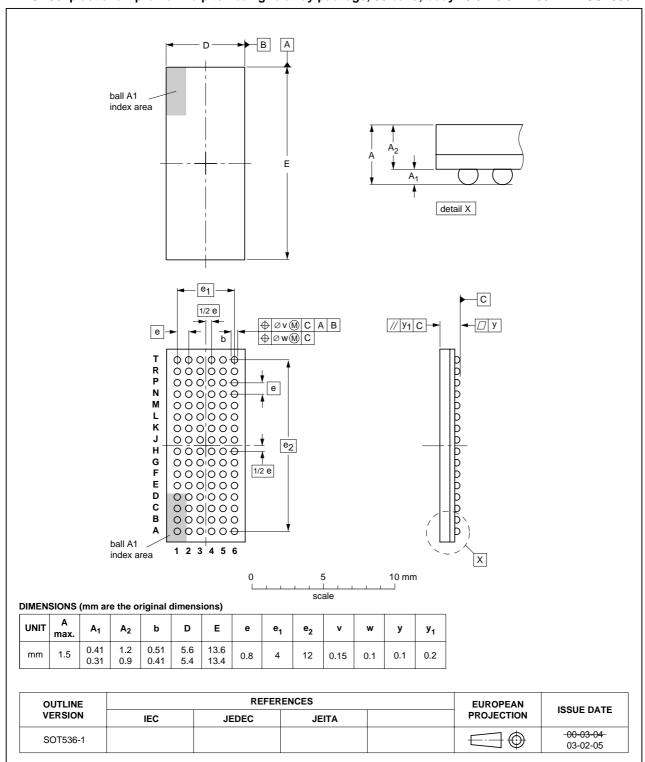


Fig 27. Package outline SOT536-1 (LFBGA96)

Product data sheet

9397 750 14759 Rev. 01 — 15 July 2005

22 of 27

13.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

13.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness ≥ 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

13.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

9397 750 14759

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

 smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

13.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 °C and 320 °C.

13.5 Package related soldering information

Table 11: Suitability of surface mount IC packages for wave and reflow soldering methods

Package [1]	Soldering method		
	Wave	Reflow [2]	
BGA, HTSSONT 3, LBGA, LFBGA, SQFP, SSOPT 3, TFBGA, VFBGA, XSON	not suitable	suitable	
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable [4]	suitable	
PLCC [5], SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended [5] [6]	suitable	
SSOP, TSSOP, VSO, VSSOP	not recommended [7]	suitable	
CWQCCNL[8], PMFP[9], WQCCNL[8]	not suitable	not suitable	

^[1] For more detailed information on the BGA packages refer to the (*LF*)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

Philips Semiconductors SSTUA32866

1.8 V DDR2-667 configurable registered buffer with parity

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

14. Abbreviations

Table 12: Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Silicon
DDR	Double Data Rate
DIMM	Dual In-line Memory Module
LVCMOS	Low Voltage Complementary Metal Oxide Silicon
PPO	Partial Parity Out
PRR	Pulse Repetition Rate
RDIMM	Registered Dual In-line Memory Module
SSTL	Stub Series Terminated Logic

15. Revision history

Table 13: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
SSTUA32866_1	20050715	Product data sheet	-	9397 750 14759	-

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

17. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

18. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

19. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

SSTUA32866

1.8 V DDR2-667 configurable registered buffer with parity

21. Contents

1	General description	. 1
2	Features	. 1
3	Applications	. 1
4	Ordering information	. 2
5	Functional diagram	. 2
6	Pinning information	. 4
6.1	Pinning	. 4
6.2	Pin description	
7	Functional description	
7.1	Function table	
8	Limiting values	
9	Recommended operating conditions	10
10	Characteristics	11
10.1	Timing diagrams	
11	Test information	16
11.1	Parameter measurement information for	
44.0	data output load circuit	16
11.2	Data output slew rate measurement information	18
11.3	Error output load circuit and voltage	10
	measurement information	19
11.4	Partial parity out load circuit and voltage	
	measurement information	
12	Package outline	22
13	Soldering	23
13.1	Introduction to soldering surface mount	
	packages	
13.2	Reflow soldering	
13.3 13.4	Wave soldering	
13.5	Package related soldering information	
14	Abbreviations	
15	Revision history	
16	Data sheet status	
17	Definitions	
18	Disclaimers	
19	Trademarks	
20	Contact information	
4 U	CUITACT HIIOHIIAHOH	20

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 15 July 2005 Document number: 9397 750 14759